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Abstract The results indicated that a chemometric approach could effectively characterize 
different attributes in quality between buffalo meat from Nakhon Phanom (NP) province, 
Thailand and Khammouane (KM) province, Laos. Neither the unsupervised principal component 
analysis (PCA) model nor the supervised partial least squares-discriminant analysis (PLS-DA) 
model completely separated the NP and KM groups. However, the  sparse PLS-DA model was 
able to successfully distinguish between the meat samples originating from KM versus NP. 
Interestingly, orthogonal projections to latent structures discriminant analysis (OPLS-DA) 
exhibited superior discriminatory performances between regional meat samples. The robust 
OPLS-DA model used an orthogonal and a predictive factor, demonstrating a strong fit with R2X 
= 0.715, R2Y = 0.877 (P<0.001), and Q2Y = 0.803 (P<0.001). Consequently, two crucial variables 
were identified based on the selection criteria (VIP>2, P<0.05, FDR<0.05). Meat odors from 
sensors 1 (AUC=0.936, 95% CI: 0.841-0.989) and 4 (AUC=0.948, 95% CI: 0.843-1.000) could 
effectively distinguish between the NP and KM meats. In conclusion, the chemometric analysis 
successfully discerned regional quality differences and identified key discriminatory variables.  
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Introduction 

 
Meat quality and authentication have become important issues in the food 

industry driven by consumer demand for assurances about the provenance, 
safety, and the integrity of meat (Zhang et al., 2021a; 2023). Authenticating 
animal-derived food products such as meat, dairy, honey, eggs, and fats relies on 
the sophisticated integration of advanced analytical techniques and multivariate 
statistical approaches (Ye et al., 2023). Chemometrics refers to mathematical and 
statistical techniques used to extract meaningful information from complex 
chemical datasets (Héberger, 2008). Principal component analysis (PCA) enables 
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data exploration and dimensionality reduction (Kang et al., 2022). Partial least 
squares discriminant analysis (PLS-DA), sparse PLS-DA (sPLS-DA), and 
orthogonal PLS-DA (OPLS-DA) are supervised techniques for classification and 
discrimination. PLS-DA handles complex data structures (Kang et al., 2022), 
whereas sPLS-DA selects key discriminatory variables, improving model 
interpretation (Lê Cao et al., 2011). OPLS-DA effectively separating predictive 
and non-predictive variations (Kang et al., 2022). These chemometric methods, 
which are often combined with spectroscopy, have become prevalent to ensure 
meat quality and authenticity, thus, providing a complementary approach to 
robust analysis. In food and meat processing, chemometrics has become an 
indispensable set of tools with diverse applications. One major use is to detect 
food fraud by identifying chemical markers of authenticity (Putnik et al., 2019). 
These powerful tools are also used for the characterization and comparison of 
meat samples (Arvanitoyannis and van Houwelingen-Koukaliaroglou, 2003; 
Vlachos et al., 2016).  Chemometrics is now an integral component in food 
authentication, helping to differentiate and prove the identity of products through 
a combination of chemically analytical methods. Therefore, this study aimed to 
use the chemometric approach to discriminate buffalo meat from two regions of 
Nakhon Phanom and Khammouane. 
 
Materials and methods  

 
Experimental design  

 
Forty loin (longissimus lumborum, LL) muscles were obtained from swamp 

buffaloes 24 hours post-mortem. Samples were purchased from a local market in 
Nakhon Phanom province (NP, n=20), Thailand (13.8140°N, 100.0373°E) and 
Khammouane province (KM, n=20), Laos PDR (17.6366°N, 105.1861°E) in 
February 2023. The samples were transported on ice at approximately 4°C to the 
laboratory for analysis. Prior to analysis, the meat was trimmed of fat and 
connective tissue. The LL muscles were cut into 1-inch-thick steaks to be used 
for meat quality assessments. A chemometric approach was used for data 
analysis. 

 
pH  

 
The pH of fresh loin samples was measured in triplicate using a handheld 

pH meter (HI99163, Hanna Instruments, USA) equipped with an FC2323 probe 
(Phoemchalard et al., 2022). Before sample analysis, the pH probe was calibrated 
with standard buffer solutions at pH 4 and pH 7 to ensure accurate functionality. 
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Color  
 

Instrumental color analysis was performed to evaluate the visual attributes 
of the buffalo meat samples (AMSA, 2012; Phoemchalard et al., 2021a). The 
CIELAB color space system was utilized, in which the L* parameter represented 
lightness, the a* parameter indicated red/green, and the b* parameter measured 
yellow/blue. Color measurements were obtained in quintuplicate for each sample 
using a Konica Minolta CR-400 colorimeter (Konica Minolta Sensing Inc., 
Japan). The instrument was calibrated against a white reference standard prior to 
analysis.  

 
Drip loss and cooking loss 

 
The loss of dripping was determined by weighing meat samples (Wi) and 

then placing them in a refrigerator suspended  in plastic bags at 4°C for 24 hours 
(Honikel, 1998). After this time, the samples were removed, blotted, and 
reweighed (Wf). The drip loss was calculated using the following equation: 

 
Drip loss (%) = [(Wi - Wf)/Wi] x 100 

 
For cooking loss analysis (Honikel, 1998), 2.54-cm thick meat samples 

were weighed (Wi), vacuum sealed, and cooked by boiling in a water bath at 
80°C until an internal temperature of 75°C was reached. The samples were then 
cooled, refrigerated overnight at 4°C, blotted, and reweighed (Wf). The cooking 
loss was calculated using the following equation: 

 
Cooking loss (%) = [(Wi - Wf)/Wi] x 100 

 
All water-holding capacity (WHC) analyses, including that of drip loss and 

cooking loss, were performed in triplicate. 
 

Textural properties 
 

The shear force analysis was performed following the standard procedure 
(AMSA, 2016). Prior to analysis, samples from the cooking loss study were 
cooled to 4°C overnight. The 1.27-cm diameter cylindrical core samples were 
extracted from each meat sample using a coring device. The measurements were 
then performed at room temperature. The shear force parameters were obtained 
using a Warner-Bratzler V-blade attached to a TA-XT plus Texture Analyzer 
(Stable Micro System Ltd., Surrey, UK). The blade was set to travel at a 
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crosshead speed of 4 mm/s using a 50 kg load cell. The maximum force (kg/cm2) 
and shear work (kg/s) were determined from the force-deformation curve 
replicated 6 times on each sample. All instrumental texture profiling was 
conducted in accordance with AMSA guidelines to ensure a standardized and 
reproducible assessment of meat shear forces. 

Texture profile analysis (TPA) was conducted using a texture analyzer 
equipped with a P/50 cylindrical probe. The meat samples remaining from the 
cooking loss analysis were cut into 1×1×1 cm3 pieces and analyzed in triplicate. 
The cooked meat samples were compressed twice to 75% of their original height 
at a crosshead speed of 1 mm/s, following the two-bite simulation method 
(Bourne, 1978). Textural parameters including hardness, adhesiveness, 
gumminess, cohesiveness, chewiness, springiness, and resilience were 
determined from the force-time curves using the instruments Exponent software, 
version 6.1.16.0. This standardized TPA methodology allowed a quantitative 
characterization of meat texture attributes. 

 
Proximate composition  

 
Loin samples were collected from each group of buffaloes. Before 

proximate analysis, all external fat and connective tissues were removed. The 
meat was then cut into cubes and ground. Approximately 150 g of each sample 
was placed  on a round plate and moisture, protein, fat, ash, and collagen were 
analyzed using a FoodScanTM 2 Meat Analyzer (Fossanalytics, Hillerod, 
Denmark) approved by the AOAC method (Anderson, 2007).  

 
Electronic nose (E-noses) 

 
The meat odor profiles were analyzed using an e-noses system equipped 

with a metal oxide semiconductor (MOS) sensor technology (Electronic Nose 
Co., Ltd., Bangkok, Thailand). The e-noses contained an array of eight different 
MOS sensor types, including TGS 816 (sensor 1), TGS 2600 (sensor 2), TGS 
823 (sensor 3), TGS 2603 (sensor 4), TGS 826 (sensor 5), TGS 2610 (sensor 6), 
TGS 2620 (sensor 7), and TGS 2444 (sensor 8) models, allowed for a broad 
volatile compound detection. Meat samples were prepared and the analysis 
parameters of the e-noses was optimized according to established protocols 
(Phoemchalard et al., 2021b; Tathong et al., 2023) to maximize sensor responses. 
Odor analysis was carried out at a sensor temperature of 25°C using the CIM 
NOSE 2.0 software system (Electronic Nose Co., Ltd.) to record and process 
sensor responses. 
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Chemometrics analysis 
 
Physicochemical data on buffalo loin meat from the Nakhon Phanom and 

Khammouane provinces were normalized using the median and Pareto scaling 
prior to statistical analysis. Both univariate analysis and multivariate 
chemometric approaches were utilized, including PCA, PLS-DA, sPLS-DA, 
OPLS-DA, together with a receiver operating characteristic (ROC) curve 
analysis. The predictability and robustness of the OPLS-DA models were 
evaluated using R2X, R2Y, and Q2Y values. R2X values evaluated predictor 
variable variation, while R2Y values evaluated response variable variation. Q2Y 
values measured predictive ability by cross-validation. Values near 1 signified 
excellent predictive and explanatory power. The permutation test (1000x) 
yielded P<0.05, further validating the accuracy of the model. Large R2Y–Q2Y 
gaps (>0.3) or Q2Y intercepts less than 0.05 indicated overfitting; therefore, 
because the gaps did not exceed 0.3 it indicated that there was no overfitting 
(Eriksson et al., 2003). Variables with VIP>2, P<0.05, and FDR<0.05 were 
considered the most distinct and influential characteristics differentiating sample 
groups in the models. In addition, a permutation test (1000x) was performed, 
resulting in P-values less than 0.05, further validating the accuracy of the models. 
A large difference between R2Y and Q2Y (greater than 0.3) or Q2Y intercepts 
below 0.05 indicated model overfitting (Eriksson et al., 2003). To identify the 
most important variables from the models, variable importance in projection 
(VIP) scores from OPLS-DA were applied above 2 along with P-values less than 
0.05 and FDR values below 0.05. Variables exceeding these thresholds can be 
considered as the most distinct and influential variables differentiating the 
sample groups in the models. For ROC curve analysis, the evaluation of the 
machine learning model performance   for binary classification was measured by 
plotting the sensitivity against the 1-specificity across the discrimination 
thresholds. Models with ROC curves that shifted closer to the upper-left plot 
corner exhibited higher true positives rather than lower false positives, therefore 
reflecting better discrimination. The area under the ROC curve (AUC) provided 
a quantitative metrication of overall model performance, with a higher AUC 
indicating a greater ability to correctly distinguish positive and negative instances 
(Omar and Ivrissimtzis, 2019; Pendrill et al., 2023). All chemometric modelling 
and evaluation was performed using MetaboAnalyst 5.0 (Chong et al., 2019; 
Pang et al., 2021). The combined use of univariate and multivariate statistical 
techniques allowed a comprehensive comparative analysis of the quality 
parameters of buffalo meat between the regions. 
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Results 
 
The differential expression analysis between meat groups using the fold 

change analysis (FC) (Figure 1A) and the visualization of the volcano plot 
(Figure 1B) revealed that sensor 4 was significantly down-regulated and sensor 
1 was significantly up-regulated. Consequently, the FC analysis demonstrated 
that sensor 4 had a large, statistically significant negative log2 (FC) between the 
meat groups, indicating that its expression was lower in one group than in the 
other. Meanwhile, sensor 1 exhibited a large and significant positive log2 (FC), 
which meant that its expression was higher in one group compared to the other. 
The volcano plot visualized these findings, with sensor 4 falling in the 
significantly downregulated quadrant (lower left) and sensor 1 plotted in the 
significantly upregulated quadrant (upper right). The positions in the volcano 
plot indicated that sensors 4 and 1 have substantial magnitude FC combined with 
high statistical significance between the two meat groups. 

 

 
 
Figure 1. Fold change (A) analysis and Volcano plot (B) between meat groups 

 
T-tests were conducted to compare 28 variables between the two groups 

(Figure 2). Using a significance level of 0.05 for both the P-value and FDR, the 
results indicated that 7 of the 28 variables showed statistically significant 
differences between the groups. Sensor 4 (Methyl mercaptan and 
trimethylamine), sensor 1 (butane, methane, propane), sensor 8 (ammonia), 
sensor 5 (isobutane, ethanol, ammonia), sensor 3 (organic solvent vapors), 
adhesiveness and fat content were found to differ significantly between the two 
meat groups according to the results of the t-test results (P<0.05 and FDR<0.05). 
The meat odor responses detected by sensors 3, 4, and 5, as well as the fat content, 
were significantly higher in NP meat compared to the KM meat. In contrast, the 
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responses of sensors 1 and 8, along with adhesiveness, were greater in KM meat 
than in that of NP meat. 

 
Figure 2. Two-sample t-tests (P-value and FDR<0.05) 

 
Pattern search analysis was conducted to identify variables that correlated 

significantly with the readings of sensors 1 and 4 (Figure 3). Using a significance 
level of 0.05 for both the P-value and FDR, 5 variables were found to have 
statistically significant correlations with sensor 1. Sensor 8 showed a strong 
positive correlation of 0.76 (t=7.18, P<0.001, FDR<0.001). Sensor 4 displayed a 
moderate negative correlation of -0.69 (t=-5.95, P<0.001, FDR<0.001). Sensor 3 
demonstrated a moderate negative correlation of -0.48 (t=-3.38, P<0.01, 
FDR<0.01). Collagen exhibited a moderate positive correlation of 0.48 (t=3.34, 
P<0.01, FDR<0.01). Finally, cooking loss revealed a weak positive correlation 
of 0.43 (t=2.95, P<0.01, FDR<0.05). These results indicated strong predictive 
relationships between sensor 1 and sensors 8, 4, and 3, together with moderate 
associations with collagen content and cooking loss. These findings were based 
on the analysis of the pattern search that met the significance criteria.  

For sensor 4, four variables showed statistically significant correlations. 
Sensor 3 uncovered a strong positive correlation of 0.76 (t=7.07, P<0.001, 
FDR<0.001). Sensor 1 exhibited a moderate negative correlation of -0.69 (t=-
5.95, P<0.001, FDR<0.001). Sensor 8 revealed a moderate negative correlation 
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of -0.59 (t=-4.46, P<0.001, FDR<0.001). Finally, sensor 2 demonstrated a weak 
positive correlation of 0.44 (t=3.00, P<0.01, FDR<0.05).  

 

 
Figure 3. Pattern search of top variables correlated to sensors 1 (A) and 4 (B) 
 

Multivariate techniques, including PCA, PLS-DA, sPLS-DA, and OPLS-
DA, are shown in Figures 4 and 5. The PCA revealed that the first two principal 
components (PC) accounted for 66.5% and 13.5% of the total variance, 
respectively. The PLS-DA further indicated that the first two PCs explained 
14.1% and 60.4% of the variation. Furthermore, sPLS-DA improved sample 
modeling by identifying key variables that contributed to group separation; The 
first two PCs from sparse PLS-DA accounted for 14.7% and 39.99% of the 
variance.  

The OPLS-DA model evaluation metrics of R2X, R2Y, and Q2Y indicated 
strong model performance and predictive ability. Two orthogonal factors and one 
predictive factor were used to formulate the model. The R2X value of 0.715 
showed a good explanatory capacity of the predictors of the X variable space. 
The R2Y of 0.877 (P<0.001) suggested that it was an excellent model fit, with 
the predictors accounting for a substantial proportion of variance in the response 
variables. Finally, the Q2Y of 0.803 (P<0.001) demonstrated excellent predictive 
relevance, as the cross-validated predictions significantly exceeded the null 
model. 
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Using VIP scores along with statistical significance testing, the most 
distinct variables that differentiated buffalo meat originating from NP and KM 
were identified. Interestingly, variables with VIP>2, P<0.05, and FDR<0.05 
were considered the most critical variables. Based on meeting these criteria 
(Figure 5C), sensor 1 and sensor 4 emerged as the variables most influential in 
distinguishing meat from the two provincial origins according to the multivariate 
model. 

 

 

 
 

Figure 4. 2D plot (A) and biplot (B) of principal component analysis (PCA), 2D 
plot (C) of partial least squares discriminant analysis (PLS-DA), and 2D plot (D) 
of sparse PLS-DA (sPLS-DA) of buffalo meat originating from Nakhon Phanom 
(NP) province, Thailand and Khammouane (KM) province, Laos  
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Figure 5. Multivariate modelling of physicochemical variations using OPLS-
DA: 2D score plot (A), S-plot (B), VIP-plot (C), and permutation (D) 
 

 The ROC curve analyzes of sensors 1 and 4 demonstrated strong 
discriminative abilities (Figure 6A-B). Sensor 1 had an AUC of 0.936 (95% CI: 
0.841–0.989), while sensor 4 had a superior AUC of 0.948 (95% CI: 0.843–
1.000). The high AUC values for sensors 1 and 4 indicated excellent and 
outstanding differentiation capacities and furthermore were perfect classifiers 
having an AUC of 1.0. The narrow confidence intervals signified the high 
precision of the AUC estimates and also showed that sample sizes were adequate. 
For sensor 1, the CI suggested that the true AUC would be 0.841–0.989 according 
to the new data. The CI of sensor 4 indicated that its true AUC would be between 
0.843–1.000, the upper boundary reaching 1.000. Accordingly, this implied a 
significant statistically perfect classification. Thus, the ROC analyzes of sensors 
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1 and 4 validated the strong discriminative powers in differentiating between the 
positive and negative classes.  

 

 

 
Figure 6. Classical univariate ROC curve analyses of sensor 1 (A) and sensor 4 
(B) and multivariate ROC curve based on exploratory analysis (all models (C) 
and two features (D)) 
 

Exploratory analysis of the multivariate ROC curve incorporated all models 
(Figure 6C) and demonstrated an exceptional discriminative performance. The 
AUC values increased steadily with the input of additional models, ranging from 
0.953 for the first 2 models increasing to 0.993 for 20 models. The AUC values 
were 0.953, 0.977, 0.978, 0.991, 0.993, and 0.992 for the top 2, 3, 5, 10, 20, and 
28 ranked models, respectively. The upward trend in AUC with the inclusion of 
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more models indicated that the combination of multiple models leads to 
increased predictive accuracy and enhanced differentiation between positive and 
negative cases. Remarkably, the confidence intervals for all the model 
combinations ranged from 0.821 to 1.000, signifying a significant statistically 
perfect classification. This implied that the new data showed the true AUC values 
to have a 95% probability of reaching the maximum AUC of 1.0. 

Additionally, the exploratory analysis of the multivariate ROC curve 
incorporating sensors 1 and 4 (Figure 6D) achieved strong discriminative ability, 
with an AUC of 0.953 (95% CI: 0.821–1.000). An AUC of 0.953 indicated 
excellent differentiation between positive and negative cases using the combined 
inputs of sensor 1 and sensor 4. The confidence interval ranging from 0.821-
1.000 suggested that the true AUC was between 0.821–1.000. This would imply   
a 95% certainty if the analysis was repeated on new data. In particular, the upper 
boundary of the CI reaching 1.000 implied that the multivariate model attained a 
statistically significant perfect classification. This provided evidence that the 
combination of sensor 1 and sensor 4 yielded an optimized predictive 
performance similar to that of a flawless classifier. 
 
Discussion 

 
Chemometrics has been found to be helpful to discriminate and 

authenticate meat quality. This investigation has been carried out using 
chemometric techniques namely PCA and PLS-DA, which have shown partial 
separation among the NP and KM buffalo meat samples; however, large overlaps 
were recorded for NP (green) and KM (pink) samples in the score plots. This 
demonstrated that uniquely, physicochemical attributes in unsupervised and 
supervised models, did not provide a suitable means to classify different meat 
quality profiles. Conversely, sPLS-DA was able to classify KM and NP meat 
samples. However, OPLS-DA produced better performance criteria separating 
the different regional meat samples with 2 orthogonal and 1 predictor variables, 
with a high fitting (R2X=0.715, R2Y=0.877) and good predictively (Q2Y=0.803) 
respectively. Therefore, two key factors emerged from this study that were 
capable of discriminating between NP or KM meat and that was selecting 
standard meat smells from sensor 1 (AUC=0.936) and sensor 4 (AUC=0.948). 

Similarly, chemometric techniques could be applied to classify specific 
meat types, e.g., by building up discriminant models using odor profiles of 
Tibetan pig meat (Garlito et al., 2023) or from metabolomic profiles (Ryu et al., 
2019; Wang et al., 2020; Akhtar et al., 2021; Phoemchalard et al., 2022). In 
addition, incorporating multivariate analysis techniques, regression modeling, 
and experimental study design (Zhang et al., 2021b) could be used as  tools for 
quality control, by identifying various useful QC attributes such as the quality of 
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meat. Furthermore, this method in conjunction with FTIR spectroscopy has been 
used to verify and track meat and meat products, thereby offering an easier and 
faster substitution than conventional methods (Andre and Soukoulis, 2020). 
Moreover, a chemometric approach, such as the one-class partial least squares 
classification version (PLS) and the soft independent class analysis modeling 
(SIMCA), have been used to build quality, safety, and quality monitors of meat 
using the NIR spectral fingerprint (Rohman, 2019). Chemometrics provide a 
means for the extraction of signature chemical features and pattern recognition 
which are used to identify their properties (Granato et al., 2018). When coupled 
with spectroscopy and/or chromatography, chemical signatures help validate 
authenticity and quality through chemometrics (Magdalena Efenberger-
Szmechtyk and Kregiel, 2018).  

Hyperspectral imaging integrates spectroscopic and imaging techniques to 
obtain spatial and spectral information. This technology enables meat quality 
assessment and validation (Reis et al., 2018). Hyperspectral images provide 
chemical and physical data for chemometric analysis. Chemometrics is based on 
near-infrared spectra identify quality patterns in meat (Niu et al., 2014). Beyond 
meat, chemometrics and hyperspectral imaging can discriminate the 
geographical origins of food. For example, chemometric analysis of 
hyperspectral data successfully differentiated European beef samples based on 
characteristic spectral profiles (Vlachos et al., 2016). 

In our data, the multivariate ROC analysis also showed a good 
classification capacity, where the sensors 1 (AUC=0.936) and 4 (AUC=0.948) 
were found to be highly discriminant measures. The excellent AUCs proved to 
be an excellent capacity of distinction between the positive and negative classes. 
Moreover Classifier 4 was also excellent regarding all three class labels, and we 
saw a very low CI in all of them (close to 0). Combined, the ROC results showed 
that sensors 1 and 4 served well as diagnostic or prognostic markers due to their 
high specificity. Additionally, the multivariate ROC curve showed that having 
more than 10 models accomplished a 72% accuracy rate that was an excellent 
classifier (AUC>0.99) of 72%. Furthermore, combining only the output of 
sensors 1 and 4 gave high accuracy with good differentiation (almost a perfect 
AUC with a narrow CI). The synergistic effect was supported in combination 
with prognostic values using multiple sensors or models to enhance classification 
performance and prediction capabilities. 

Meat quality can also be distinguished through the sensing response of the 
e-noses as they can sense and differentiate multiple scents by employing an array 
of MOS sensors. This method allowed fast and non-destructive discrimination of 
complicated volatile meat flavor patterns using pattern recognition  MOS sensor 
signals (Sarno and Wijaya, 2019; Anwar et al., 2023). Data from the e-noses 
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allowed comparison of various meat flavor signatures corresponding to different 
samples sources. Although the use of e-noses has proven to be potential in meat 
inspection and identification, there remains a challenge particularly in 
deployment. The main drawback of e-noses is their reliability, sensor 
consistency, and how to choose the best sensor array configuration (Sarno and 
Wijaya, 2019; Liu et al., 2023). The reliance on pattern recognition of volatile 
compounds makes the sample collection process and data analysis important 
using e-noses (Wojnowski et al., 2017; Sarno and Wijaya, 2019). Furthermore, 
because e-noses cannot differentiate single molecules, other methods such as 
GC–MS might be required to determine the presence of targeted biomarkers 
(Wojnowski et al., 2017; Jia et al., 2018). Moreover, using e-noses for  quality 
assessment requires developing relationships between sensor responses and the 
meat properties (Ghasemi-Varnamkhasti et al., 2009; Górska-Horczyczak et al., 
2016; Jia et al., 2018),. In addition another study showed that the potential of 
inexpensive colorimetric sensors used to build an electronic nose prototype 
coupled with chemometric data processing could be used to quickly identify  
pork-adulterated minced beef (Han et al., 2020).  

In conclusion, although PCA and PLS-DA did not exhibit enough 
discrimination, sparse PLS-DA and, especially, OPLS-DA were successful in 
distinguishing regional variations in meat quality. The ROC curve results clearly 
indicated that sensor response, as in sensors 1 and 4, showed great promise and 
could clearly be used as a prediction tool due to it being highly sensitive and 
accurate. To achieve sustainability and food security, it is essential to verify the 
origin and quality of meat so as to; reduce fraud, ensure transparent labeling, 
support sustainable production, promote lower impact consumption, and improve 
food availability and security. 
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